如图,△ABC中,∠BAC的内角平分线与外角平分线分别交BC及BC的延长线于点P、Q.(1)求∠PAQ的大小;(2)若点M为PQ的中点,求证:PM2=CM·BM.
如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.
在平面直角坐标系中按下列要求作图.(1)作出三象限中的小鱼关于x轴的对称图形;(2)将(1)中得到的图形再向右平移6个单位长度.
购进某种干果,由于销售状况良好,超市又用9000元第二次购进该干果,但第二次的进价比第一次的提髙了20%,第二次购进干果数量是第一次的2倍还多300千克.(1)求该干果的第一次进价是每千克多少元?(2)百姓超市按每千克9元的价格出售,当大部分干果售出后,余下的按售价的8折售完,若两次销售这种干果的利润不少于5820元,则最多余下多少千克干果按售价的8折销售.
李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?
如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.(1)求∠DCE的度数;(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.