如图所示,在△ABC中,AB=4,探究以下问题:(1)如图①所示,DE∥BC,DE把△ABC分成面积相等的两部分,即S1=S2,求AD的长;(2)如图②所示,DE∥FG∥BC,DE,FG把△ABC分成面积相等的三部分,即S1=S2=S3,求AD的长;(3)如图③所示,DE∥FG∥HK∥…∥BC,DE,FG,HK,…把△ABC分成面积相等的n部分,即S1=S2=S3=…=Sn,请直接写出AD的长.
作图题:如图,△ABC在平面直角坐标系中,每个小正方形的边长均为1,其中点A、B、C的位置分别如图所示.(不要求写作法)(1)作出△ABC上平移3个单位得到的△A1B1C1,其中点A、B、C的对应点分别为点A1、B1、C1.(2)作出△ABC关于直线对称的△A2 B2C2,其中点A、B、C的对应点分别为点A2、B2、C2,并写出点A2的坐标.
如图,抛物线y=-x2+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=-1与x轴交于点D.(1)求该抛物线的解析式和B、C点的坐标;(2)设点P(x,y)是第二象限内该抛物线上的一个动点,△PBD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;(3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标;(4)若此抛物线上有一点Q,满足∠QCA=∠ABO,若存在,求直线QC的解析式;若不存在,试说明理由.
如图,BC是半⊙O的直径,点P是半圆弧的中点,点A是弧BP的中点,AD⊥BC于D,连结AB、PB、AC,BP分别与AD、AC相交于点E、F.(1)BE与EF相等吗?并说明理由;(2)小李通过操作发现CF=2AB,请问小李的发现是否正确,若正确,请说明理由;若不正确,请写出CF与AB正确的关系式.(3)求的值.
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).(1)直接写出A、B、D三点的坐标;(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。(1)试判断四边形OCED是何种特殊四边形,并加以证明.(2)若∠OAD=300,F、G分别在OD、DE上,OF=DG,连结CF、CG、FG, 判断△CFG形状,并加以证明.