(本小题满分12分)设数列的前项和为 ,数列为等比数列,且 .(1)求数列和的通项公式;(2)设,求数列的前项和.
一次函数是上的增函数,,已知.(1)求;(2)若在单调递增,求实数的取值范围;(3)当时,有最大值,求实数的值.
已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.
已知函数.(1)用函数单调性的定义证明:函数在区间上为增函数; (2)若,当时,求实数m的取值范围.
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
己知圆 直线. (1)求与圆相切,且与直线平行的直线的方程; (2)若直线与圆有公共点,且与直线垂直,求直线在轴上的截距的取值范围.