(本小题满分12分)设数列的前项和为 ,数列为等比数列,且 .(1)求数列和的通项公式;(2)设,求数列的前项和.
定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值
已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域
已知函数.(1)若的解集为,求实数的值;(2)在(1)的条件下,求函数f(x)在区间[0,3]的值域.
(本小题满分16分)已知函数(是自然对数的底数).(1)若曲线在处的切线也是抛物线的切线,求的值;(2)若对于任意恒成立,试确定实数的取值范围;(3)当时,是否存在,使曲线在点处的切线斜率与 在上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.