(1)已知两条直线:,:,问:当为何值时,与相交; (2)圆的方程为,求圆关于直线:对称的圆的方程.
(本小题满分13分)在△ABC中, 内角A, B, C所对的边分别是a, b, c. 已知, a =" 3," . (Ⅰ)求b的值; (Ⅱ)求的值.
(本小题满分12分)已知△ABC中,A(2,-1),B(4,3),C(3,-2),求: (1)BC边上的高所在直线方程的一般式; (2)求
(本小题满分14分)已知函数(R),曲线在点处的切线方程为. (1)求实数a的值,并求的单调区间; (2)试比较与的大小,并说明理由; (3)是否存在k∈Z,使得对任意恒成立?若存在,求出k的最小值;若不存在,请说明理由.
(本小题满分14分)已知中心在坐标原点O,焦点在x轴上的椭圆C的离心率为,且经过点. (1)求椭圆C的方程; (2)若F是椭圆C的右焦点,过F的直线交椭圆C于M、N两点,T为直线x=4上任意一点,且T不在x轴上, (ⅰ)求的取值范围; (ⅱ)若OT平分线段MN,证明:TF⊥MN(其中O为坐标原点).
(本小题满分13分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求. (1)将该产品的利润y万元表示为促销费用x万元的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.