某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.(1)求一名顾客摸球3次停止摸奖的概率;(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
(本小题满分14分)已知函数 (1)求的定义域; (2)在函数的图象上是否存在不同的两点,使过这两点的直线平行于轴; (3)当满足什么条件时,在上恒取正值.
(本小题满分为14分)定义在(-1,1)上的函数满足: ①对任意都有; ②在上是单调递增函数,. (1)求的值; (2)证明为奇函数; (3)解不等式.
(本小题满分13分).某商品在近30天内,每件的销售价格P(元)与时间t(天)的函数关系是: 该商品的日销售量Q(件)与时间(天)的函数关系是:Q=-t+40 (0<t≤30,), 求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?
(本小题满分13分)已知函数 (1)画出函数的图象; (2)利用图象回答:当为何值时,方程有一个解?有两个解?有三个解?
(本小题满分13分)计算下列各式的值 ⑴ ; ⑵ .