如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长; (2)求反比例函数的解析式和n的值; (3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
如图,AC是⊙o的直径,PA切⊙o于点A,点B是⊙o上的-点,且∠BAC=30°,∠APB=60°。 (1)求证:PB是⊙o的切线; (2)若⊙o的半径为2,求弦AB及PA、PB的长。
如图,四边形ABCD的∠BAD=∠C=90°,AB="A" D,AE⊥BC于E,ΔBEA旋转-定角度后能与ΔDFA重合。 ①旋转中心是哪-点? ②旋转了多少度? ③若AE=5cm,求四边形ABCD的面积。
某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,经调查发现,每件童装每降价1元,商场平均可多销售2件,若商场每天想盈利1200元,则童装应降价多少元?
如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,有△ABC和△A1B1C1,其位置如图所示, (1)将△ABC绕C点,按时针方向旋转时与△A1B1C1重合(直接填在横线上). (2)在图中作出△A1B1C1关于原点O对称的△A2B2C2(不写作法).
解方程:(1)x2-2x-1=0(请用求根公式法求解) (2)(3x-1)2=4(2x+3)2