已知椭圆上的左、右顶点分别为,,为左焦点,且,又椭圆过点.(Ⅰ)求椭圆的方程; (Ⅱ)点和分别在椭圆和圆上(点除外),设直线,的斜率分别为,,若,证明:,,三点共线.
(本小题满分12分)设a∈R,函数f (x) =,其中e是自然对数的底数.(Ⅰ)求函数f (x)的单调区间;(Ⅱ)当– 1 < a < 0时,求f (x)在[1,2]上的最小值.
(本小题满分12分)如图,在五面体中,∥,,,四边形为平行四边形,平面,.求:(Ⅰ)直线到平面的距离;(Ⅱ)二面角的平面角的正切值.
(本小题满分12分)已知,若在区间上的最大值,最小值,设(1)求的解析式;(2)判断单调性,求的最小值.
(本小题满分12分)设函数f(x)=(x+2)2-2ln(x+2).(Ⅰ)求f(x)的单调区间; (Ⅱ)若关于x的方程f(x)=x2+3x+a在区间[-1,1]上只有一个实数根,求实数a的取值范围.
(本小题满分12分)在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点,(1)求点A到平面A1DE的距离;(2)求证:CF∥平面A1DE,(3)求二面角E-A1D-A的平面角的余弦值。