甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有个白球和个红球的盒子中一次性摸出球(这些球除颜色外完全相同),如果摸到的是个红球,即为中奖.试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点. (Ⅰ)求证:EG//平面ABF; (Ⅱ)求三棱锥B-AEG的体积; (Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.
据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:
态度
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05. (Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人? (Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)已知,求数列{bn}的前n项和.
已知向量a=,b=,设函数=ab.(Ⅰ)求的单调递增区间;(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
已知函数.(Ⅰ)若是上是增函数,求实数a的取值范围;(Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立;(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.