(本小题满分12分)设函数,其中a∈R.已知f(x)在x=3处取得极值.(1)求f(x)的解析式;(2)求f(x)在点A(1,16)处的切线方程.
已知在平面直角坐标系中,圆的方程为.以原点为极点,以轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程和圆的参数方程;(2)求圆上的点到直线的距离的最小值.
若二阶矩阵满足:.(1)求二阶矩阵;(2)若曲线在矩阵所对应的变换作用下得到曲线,求曲线的方程.
已知函数,,且在点处的切线方程为.(1)求的值;(2)若函数在区间内有且仅有一个极值点,求的取值范围; (3)设为两曲线,的交点,且两曲线在交点处的切线分别为.若取,试判断当直线与轴围成等腰三角形时值的个数并说明理由.
若函数,非零向量,我们称为函数的“相伴向量”,为向量的“相伴函数”.(1)已知函数的最小正周期为,求函数的“相伴向量”;(2)记向量的“相伴函数”为,将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移个单位长度,得到函数,若,求的值;(3)对于函数,是否存在“相伴向量”?若存在,求出“相伴向量”;若不存在,请说明理由.
已知点是抛物线上不同的两点,点在抛物线的准线上,且焦点到直线的距离为.(I)求抛物线的方程;(2)现给出以下三个论断:①直线过焦点;②直线过原点;③直线平行轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.