设函数的最高点的坐标为(),由最高点运动到相邻最低点时,函数图形与轴的交点的坐标为().(1)求函数的解析式;(2)当时,求函数的最大值和最小值以及分别取得最大值和最小值时相应的自变量的值;(3)将函数的图象向右平移个单位,得到函数的图象,求函数的单调减区间.
已知an=(1)求数列{an}的前10项和S10;(2)求数列{an}的前2k项和S2k.
求下面数列的前n项和:1,3,5,7,…
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,bn=an+n2(n≥2).(1)证明:{bn}从第2项起是以2为公比的等比数列;(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.
等比数列{an}的前n项和为Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.