在平面直角坐标系中,O为坐标原点,A、B、C三点满足(1)求证:A、B、C三点共线;(2)已知,的最小值为,求实数的值.
已知. (1)化简; (2)若,且是第二象限角,求的值.
已知 (1)若的夹角为45°,求; (2)若,求与的夹角.
如图,设、是平面内相交成角的两条数轴,、分别是与轴、轴正方向同向的单位向量。若向量,则把有序实数对叫做向量在坐标系中的坐标。若,则=
已知三次函数为奇函数,且在点的切线方程为 (1)求函数的表达式; (2)已知数列的各项都是正数,且对于,都有,求数列的首项和通项公式; (3)在(2)的条件下,若数列满足,求数列的最小值.
已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。 (Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程; (Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值; (Ⅲ)讨论椭圆C及其“知己圆”的位置关系.