如图,已知四棱锥P—ABCD的底面ABCD为等腰梯形,AB//CD,AC⊥DB,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.(Ⅰ)求异面直线PD与BC所成角的余弦值;(Ⅱ)求二面角P—AB—C的大小;(Ⅲ)设点M在棱PC上,且,问为何值时,PC⊥平面BMD.
已知函数.(1)判断函数的奇偶性;(2)求该函数的值域;(3)证明是上的增函数.
已知a是实数,函数f(x)=x2(x-a)(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)a>0,求f(x)的单调增区间.
已知函数的值域为,它的定义域为A,若,求a的取值范围.
已知函数是定义在上的奇函数,并且在上是减函数.是否存在实数使恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.
我国是水资源比较贫乏的国家之一.目前,某市就节水问题,召开了市民听证会,并对水价进行激烈讨论,会后拟定方案如下:以户为单位,按月收缴,水价按照每户每月用水量分三级管理,第一级为每月用水量不超过12吨,每吨3.5元;第二级计量范围为超过12吨不超过18吨部分,第三级计量范围为超出18吨的部分,一、二、三级水价的单价按1:3:5计价.(1)请写出每月水费(元)与用水量(吨)之间的函数关系;(2)某户居民当月交纳水费为63元,该户当月用水多少吨?