假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.问:(1)一个孩子有显性基因决定的特征的概率是多少?(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?
画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.
已知椭圆C:+=1(a>b>0),左、右两个焦点分别为F1,F2,上顶点A(0,b),△AF1F2为正三角形且周长为6. (1)求椭圆C的标准方程及离心率; (2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.
已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点. (1)求椭圆C的方程; (2)求·的取值范围; (3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点. (1)求椭圆的标准方程; (2)若P为线段AB的中点,求k1; (3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3. (1)求椭圆E的方程; (2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.