首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 1993

若定义在上的函数满足条件:存在实数,使得:
⑴ 任取,有是常数);
⑵ 对于内任意,当,总有
我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:
(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。
(2) 已知是“平顶型”函数,求出 的值。
(3)对于(2)中的函数,若上有两个不相等的根,求实数的取值范围。

登录免费查看答案和解析

若定义在上的函数满足条件:存在实数且,使得:⑴任取,有(是常