从一箱产品中随机地抽取一件产品,设事件A为“抽到一等品”,事件B为“抽到二等品”,事件C为“抽到三等品”,且已知.求下列事件的概率:(1)事件D“抽到的是一等品或二等品”;(2)事件E“抽到的是二等品或三等品”.
已知,是一次函数,并且点在函数的图象上,点在函数的图象上,求的解析式
.(本小题满分10分)如图,已知梯形ABCD中,AD∥BC,,AD=a,BC=2a,,在平面ABCD内,过C作,以为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积。
(本小题满分12分)已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2. (1)求双曲线G的渐近线的方程; (2)求双曲线G的方程;(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.
. (本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC; (2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
(本小题满分12分)椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (1)求该椭圆的方程;(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.