(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:.(1)直线的参数方程化为极坐标方程;(2)求直线的曲线交点的极坐标()
已知直线与直线的倾斜角相等,并且与两坐标轴围成的三角形的面积为,求直线的方程.
已知点,,为原点.⑴若点在线段上,且,求的面积;⑵若原点关于直线的对称点为,延长到,且,已知直线:经过点,求直线的倾斜角.
已知二次函数在处取得最小值.(1)求的表达式;(2)若任意实数都满足等式(为多项式,),试用表示和;(3)设圆的方程为,圆与外切,为各项都是正数的等比数列,记为前个圆的面积之和,.
求过点的直线使它与直线的夹角为.
已知是长轴为4的椭圆上的三点,点是长轴的一个顶点,过椭圆中心 (如图),且,(I)求椭圆的方程;(Ⅱ)如果椭圆上的两点,使的平分线垂直于,是否总存在实数,使。请给出证明。