(本小题满分12分)已知函数.(1)当时,求函数的单调区间;(2)设,且函数在点处的切线为,直线//,且在轴上的截距为1.求证:无论取任何实数,函数的图象恒在直线的下方.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。(1)化圆C的参数方程为极坐标方程;(2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。求:(1)⊙O的半径;(2)s1n∠BAP的值。
已知为函数图象上一点,O为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数m的取值范围;(2)设,若对任意恒有,求实数的取值范围.
已知椭圆:()的右焦点,右顶点,且.(1)求椭圆的标准方程;(2)若动直线:与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.
如右图,在底面为平行四边形的四棱柱中,底面,,,.(1)求证:平面平面;(2)若,求四棱锥的体积.