已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。(1)化圆C的参数方程为极坐标方程;(2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计. (1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴? (2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:)
定义在上的函数,如果对任意,恒有(,)成立,则称为阶缩放函数. (1)已知函数为二阶缩放函数,且当时,,求的值; (2)已知函数为二阶缩放函数,且当时,,求证:函数在上无零点; (3)已知函数为阶缩放函数,且当时,的取值范围是,求在()上的取值范围.
已知数列中,,,. (1)证明:数列是等比数列,并求数列的通项公式; (2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由; (3)若且,,求证:使得,,成等差数列的点列在某一直线上.
已知函数() (1)求函数的最大值,并指出取到最大值时对应的的值; (2)若,且,计算的值.