老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.
若正比例函数y=k1x的图象与反比例函数y=的图象有一个交点坐标是(﹣2,4)](1)求这两个函数的表达式;(2)求这两个函数图象的另一个交点坐标.
如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).(1)求k的值;(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.
已知抛物线的对称轴是直线.(1)求证:;(2)若关于x的方程的一个根为4,求方程的另一个根.