已知各项均为正数的数列的前项和为,且,,成等差数列,(1)求数列的通项公式;(2)若,设,求数列的前项和
如图,三棱锥中,底面于,,点分别是的中点,求二面角的余弦值.
已知曲线,直线.⑴将直线的极坐标方程化为直角坐标方程;⑵设点在曲线上,求点到直线距离的最小值.
已知圆,点,直线.⑴求与圆相切,且与直线垂直的直线方程⑵在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
5u如图,平行四边形中,,正方形所在的平面和平面垂直,是的中点,是的交点.⑴求证:平面;⑵求证:平面.
已知函数⑴求的最小正周期及对称中心;⑵若,求的最大值和最小值.