如图,在Rt△ABC中,∠C=90°.(1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D(不写作法,只保留作图痕迹);(2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.
已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,求证:AB=CD。
分解因式:(1)n(m-2)-n(2-m);(2)2a-4ab+2ab;
先化简再求值:4(m+1)2-(2m+5)(2m-5),其中m=-3。
计算:(1);(2)(2a)3b4÷12a3b2
如图,在直角坐标系中,⊙P与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小,若存在求出点Q的坐标,若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.