(本小题满分8分)已知:正方形中,∠MAN=45°,∠MAN绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当∠MAN绕点旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点旋转到BM≠DN时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A点为旋转中心,将△ABC绕点A顺时针旋转得△AB1C1,画出△AB1C1. (2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2. (1)求m的取值范围; (2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
已知关于的一元二次方程有两个实数根和. (1)求实数的取值范围; (2)当时,求的值
如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10。若将△PAC绕点A逆时针旋转后,得到△P/AB。⑴求点P与点P′之间的距离 ⑵∠APB的度数。
某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)