已知抛物线的表达式为(1)若抛物线与轴有交点,求的取值范围;(2)设抛物线与轴两个交点的横坐标分别为、,若,求的值;(3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于轴,垂足分别为A、B,且△OPA与△OQB全等,求证:
已知反比例函数y=(k为常数,k≠1)(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围.
如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.(1)在图中画出线段DE和DF;(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?
在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.
如图,正方形ABCD中,E与F分别是AD、BC上一点,在①AE=CF、②BE∥DF、③∠1=∠2中,请选择其中一个条件,证明BE=DF.