设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式;(2)求数列{an }的前n项和Sn.
已知四棱锥P-ABCD的三视图和直观图如下:(1)求四棱锥P-ABCD的体积;(2) 若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.(3) 若F是侧棱PA上的动点,证明:不论点F在何位置,都不可能有BF⊥平面PAD。
养路处建造无底的圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米。养路处拟另建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来增加4米(高不变);二是高度增加4米(底面直径不变)。分别计算按这两种方案所建的仓库的体积;分别计算按这两种方案所建的仓库的表面积;哪个方案更经济些?
如图,在矩形ABCD中,已知AB=3, AD=1, E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;(2)证明:E G ⊥D F。
已知三角形ABC的顶点坐标分别为A,B,C;(1)求直线AB方程的一般式;(2)证明△ABC为直角三角形;(3)求△ABC外接圆方程。
设数列前n项和,且.(Ⅰ)试求数列的通项公式;(Ⅱ)设,求数列的前项和