已知函数,,.(1)求的解析式并判别的奇偶性;(2)用定义证明:函数在R上是单调递减函数.(3)求函数的值域.
已知函数 (1)若,求函数在点(0,)处的切线方程; (2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。
在锐角中,已知内角A、B、C所对的边分别为,向量,且向量. (1)求角的大小; (2)如果,求的面积的最大值.
已知数列是公差为正的等差数列,其前项和为,点在抛物线上;各项都为正数的等比数列满足. (1)求数列,的通项公式; (2)记,求数列的前n项和.
已知函数 (1)若求的值域; (2)若为函数的一个零点,求的值.
如图,在四棱锥中,底面为边长为4的正方形,平面,为中点, . (1)求证:. (2)求三棱锥的体积.