已知.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最大值(3)证明对一切,都有成立.
在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________
设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
已知椭圆C的中心在原点,左焦点为F1,其右焦点F2和右准线分别是抛物线的顶点和准线. ⑴求椭圆C的方程;⑵若点P为椭圆上C的点,△PF1F2的内切圆的半径为,求点P到x轴的距离;⑶若点P为椭圆C上的一个动点,当∠F1PF2为钝角时求点P的取值范围.
已知双曲线的方程为, 直线通过其右焦点F2,且与双曲线的右支交于A、B两点,将A、B与双曲线的左焦点F1连结起来,求|F1A|·|F1B|的最小值