(本小题满分15分)已知四边形中,, 为中点,连接,将沿翻折到,使得二面角的平面角的大小为.(Ⅰ)证明:;(Ⅱ)已知二面角的平面角的余弦值为,求的大小及的长.
(本小题满分14分)已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:().
如图,四棱柱的底面是平行四边形,且,,,为的中点, 平面. (1)证明:平面平面; (2)若,试求异面直线与所成角的余弦值; (3)在(2)的条件下,试求二面角的余弦值.
(本小题满分14分)等比数列{}的前n项和为, 已知对任意的,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记求数列的前项和.
(本小题满分14分)如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE (Ⅰ)求证:DE⊥平面; (Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比.
(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数的分布列和数学期望.