已知,求证:
如图,在斜三棱柱中,是的中点,⊥平面,,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
已知数列的前项和为,. (1)求数列的通项公式; (2)设,=,记数列的前项和.若对,恒成立,求实数的取值范围.
设函数 (1)求的最大值,并写出使取最大值时x的集合; (2)已知中,角A、B、C的对边分别为a、b、c,若,求a的最小值.
已知函数. (Ⅰ)用分段函数的形式表示,并求的最大值; (Ⅱ)若,求实数的取值范围.
(本题满分12分)我国是水资源匮乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施.规定:每季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分的水费按基本价3倍收取;若超过6吨而不超过7吨时,超过部分的水费按基本价5倍收取. 某人本季度实际用水量为吨,应交水费为元。 (Ⅰ)求的值; (Ⅱ)试求出函数的解析式.