同学们在小学阶段做过这样的折纸游戏:把一个长方形纸片经过折叠可以得到新的四边形.如图,将长方形ABCD沿DE折叠,使点A与CD边上的点F重合,再沿EF剪开,即得到四边形DAEF.求证:四边形DAEF为正方形.
如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0). (1)写出抛物线的对称轴与x轴的交点坐标; (2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小; (3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.
已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P. (1)当点P在线段AB上时,求证:△AQP∽△ABC; (2)当△PQB为等腰三角形时,求AP的长.
如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点O; (2)直接写出△ABC与△A′B′C′的位似比; (3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.
在关于x,y的二元一次方程组中. (1)若a=3.求方程组的解; (2)若S=a(3x+y),当a为何值时,S有最值.
如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.