(1)解方程:(2)解方程:
已知关于的二元一次方程组的解是求的值.
写出二元一次方程2x+y=5的所有正整数解.
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.(1)当a=-1 , b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a和b应满足的关系式.
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.