( 本小题满分12分))设不等式确定的平面区域为,确定的平面区域为.(Ⅰ)定义坐标为整数的点为整点(1)在区域内任取1个整点,求满足的概率(2)在区域内任取2个整点,求这两个整点中恰有1个整点在区域内的概率(Ⅱ) 在区域内任取一个点,求此点在区域的概率.
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上动点,F是AB中点,AC = 1,BC = 2,AA1 = 4.(Ⅰ)当E是棱CC1中点时,求证:CF∥平面AEB1;(Ⅱ)在棱CC1上是否存在点E,使得二面角A—EB1—B的余弦值是,若存在,求CE的长,若不存在,请说明理由.
设函数.(I)求函数的单调递增区间;(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.
已知函数.(Ⅰ)求的最小正周期; (Ⅱ)在△ABC中,角A,B,C所对的边分别是,若且,试判断△ABC的形状.
省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中随机选3名队员,用表示乙校中选出的“高个子”人数,试求出的分布列和数学期望.
设,.(1)请写出的表达式(不需证明);(2)求的极小值;(3)设的最大值为,的最小值为,求的最小值.