省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中随机选3名队员,用表示乙校中选出的“高个子”人数,试求出的分布列和数学期望.
(本小题满分12分)已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)证明:当时,; (Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.
(本小题满分12分)已知函数 (Ⅰ)讨论函数的单调性; (Ⅱ)证明:若,则对任意,,有.
(本小题满分12分)已知数列是首项为正数的等差数列,数列的前项和为. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
(本小题满分12分)的内角所对的边分别为,向量与平行. (Ⅰ)求; (Ⅱ)若求的面积.
(本小题满分12分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表: (Ⅰ)请在答题卡上将上表数据补充完整,并直接写出函数的解析式; (Ⅱ)将图象上所有点向左平行移动个单位长度,得到图象,求的图象离原点最近的对称中心.