(本小题满分1 2分)己知数列是各项均为正数的等差数列,其中,且,,构成等比数列:数列的前项和为,满足.(1)求数列,的通项公式;(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
为了调查甲、乙两种品牌商品的市场认可度,在某购物网点随机选取了14天,统计在某确定时间段的销量,得如下所示的统计图,根据统计图求: (1)甲、乙两种品牌商品销量的中位数分别是多少? (2)甲品牌商品销量在[20,50]间的频率是多少? (3)甲、乙两个品牌商品哪个更受欢迎?并说明理由.
已知圆与直线相切于点,其圆心在直线上,求圆的方程.
已知数列{ }、{ }满足:. (1)求 (2)证明:数列{}为等差数列,并求数列和{ }的通项公式; (3)设,求实数为何值时恒成立.
设数列的前n项和为,为等比数列,且, (1)求数列和的通项公式; (2)设,求数列的前n项和.
在中,角的对边分别为,设S为△ABC的面积,满足4S=. (1)求角的大小; (2)若且求的值.