(本小题满分12分)设的内角,,所对的边分别为,,,且.(1)求角的大小; (2)若,求的周长的取值范围.
如图, 在三棱锥中,. (1)求证:平面平面; (2)若,,当三棱锥的体积最大时,求的长.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面上. (1)求的大小; (2)求点到直线的距离.
某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:
(1)用上述样本数据估计高三(1)班学生视力的平均值; (2)已知其余五个班学生视力的平均值分别为、、、、.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于的概率.
设是函数的零点. (1)证明:; (2)证明:.
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、. (1)求轨迹的方程; (2)证明:; (3)若点到直线的距离等于,且△的面积为20,求直线的方程.