(本小题满分10分) 已知P(3,2),一直线过点P,①若直线在两坐标轴上截距之和为12,求直线的方程;②若直线与x、y轴正半轴交于A、B两点,当面积为12时求直线的方程.
在数列{an}中,a1=,an+1=,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
有6名男医生,4名女医生. (1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法? (2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
复数,若,求的值.
设和是函数的两个极值点,其中,. (1)若曲线在点处的切线垂直于轴,求实数的值; (2)求的取值范围; (3)若,求的最大值(是自然对数的底数).
已知函数是定义在上的奇函数.当时,,且图象过点与点. (Ⅰ)求实数的值,并求函数的解析式; (Ⅱ)若关于的方程有两个不同的实数解,请写出实数的取值范围; (Ⅲ)解关于的不等式,写出解集.