如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点.(1)若是线段上的中点,求证: 平面;(2)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
(本小题满分12分)直线L1:与直线L2:的交点为(1) 求经过点和原点的直线方程;(2)求经过点与直线垂直的直线方程。
设函数的定义域为全体R,当x<0时,,且对任意的实数x,y∈R,有成立,数列满足,且(n∈N*)(Ⅰ)求证:是R上的减函数;(Ⅱ)求数列的通项公式;(Ⅲ)若不等式对一切n∈N*均成立,求k的最大值.
如图,直角梯形ABCD,∠,AD∥BC,AB=2,AD=,BC=椭圆F以A、B为焦点且过点D,(Ⅰ)建立适当的直角坐标系,求椭圆的方程;(Ⅱ)若点E满足,是否存在斜率两点,且,若存在,求K的取值范围;若不存在,说明理由。
在三棱锥中,△ABC是边长为4的正三角形,平面,,M、N分别为AB、SB的中点。(1)证明:;(2)求二面角N-CM-B的大小;(3)求点B到平面CMN的距离。
关于实数的不等式的解集依次为与,求使的的取值范围。