一次函数(为常数,且).(1)若点在一次函数的图象上,求的值;(2)当时,函数有最大值2,请求出的值.
(本题12分)已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程的解,点C的纵坐标恰好是方程的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.
(本题10分)如图,正方形ABCD和正方形AEFG有公共的顶点A,连BG、DE,M为DE的中点,连AM.(1)如图1,AE、AG分别与AB、AD重合时,AM和BG的大小和位置关系分别是 、_ ____;(2)将图1中的正方形AEFG绕A点旋转到如图2,则(1)中的结论是否仍成立?试证明你的结论;(3)若将图1中的正方形AEFG绕A点逆时针旋转到正方形ABCD外时,则AM和BG的大小和位置关系分别是__________、____________,请你在图3中画出图形,并直接写出结论,不要求证明.
(本题10分)如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场总面积为96m2,求x;(2)若两个鸡场的面积和为S,求S关于x的关系式;(3)两个鸡场面积和S有最大值吗?若有,最大值是多少?
(本题8分)P是边长为4的正方形ABCD的边BC上任意一点,过B点作BG⊥AP于G,过C点作CE⊥AP于E,连BE.(1)如图1,若P是BC的中点,求CE的长;(2)如图2,当P在BC边上运动时,(不与B、C重合)求(AG-CE)/BE的值;
如图,直线与x、y轴分别交于点E、F,点A的坐标为(—6,0),点E的坐标为(—8,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试求出△PAE的面积S与x的函数关系式,并写出自变量x的取值范围;