某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西47°方向,距A船26海里的海域,C船位于A船的北偏东58°方向,同时又位于B船的北偏东88°方向.(1)求∠ABC的度数;(2)A船以每小时40海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)
(本题8分) 求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:已知1.435,求下列各数的算术平方根:①0.0206 ; ②20600 ; (3)根据上述探究过程类比研究一个数的立方根已知1.260,则
(本题8分)若一次函数与(,的图像相交于点,.(1)求、的值;(2)若点,在函数的图像上,求的值。
已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
(1)如图1,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△AEG的面积。(2)如图2,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△DBF的面积。(3)如图,正方形ABCD、正方形CEFG和正方形MNHF的位置如图所示,点G在线段AN上,已知正方形CEFG的边长为6,则△AEN的面积为 (请直接写出结果,不需要过程)
某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套。如果每套比原销售价降低10元销售,则每天可多销售100套。该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价-每套西服的进价).1、按原销售价销售,每天可获利润 元。2、若每套降低10元销售,每天可获利润 元。3、如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套。按这种方式: 若每套降低10x元(1)每套的销售价格为 元;(用代数式表示)(2)每天可销售 套西服。(用代数式表示)(3)每天共可以获利润 元。(用代数式表示)