小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.
如图在菱形ABCD中,AE⊥BC于E点,EC=1,sinB=,求四边形AECD的周长.
先化简:-,再求当x满足时,此分式的值.
解不等式组
如图,将圆C放置在直角坐标系中,圆C经过原点O以及点A(2,0),点B(0,)。 (1)求圆心的坐标以及圆C的半径; (2)设弧OB的中点为D,请求出同时经过O,A,D三个点的抛物线解析式。 并判断该抛物线的顶点是否在圆C上,说明理由。 (3)若(2)中的抛物线上存在点P(m,n),满足∠APB为钝角,直接写出m的取值范围。
如图,AB为⊙O的直径,点C在⊙O上,延长BC至D,使得DC=CB,延长DA与⊙O交于点E,连接AC,CE. (1)求证:∠D=∠E (2)若AB=4,的长度为,求阴影部分的面积。