小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.
如图,分别以Rt△ABC的斜两条直角边为边向△ABC外作等边△BCD和等边△ACE, AD与BE交于点H,∠ACB=90°。 (1)求证:AD=BE; (2)求∠AHE的度数; (3)若∠BAC=30°,BC=1,求DE的长
如图,以矩形ABCD的对角线AC的中点O为圆心、OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H。 (1)求证:AE=CK (2)若AB=a,AD=a(a为常数),求BK的长(用含a的代数式表示)。 (3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长。
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等边三角形。 (1)求证:OF∥BD; (2)求证:△AFO≌△DEB; (3)若BE=4cm,求阴影部分的面积。
【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形. ∵S=S△OBC+S△OAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r ∴ (1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值; (2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值. (1)尝试探究: 在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________, CG和EH的数量关系是________,的值是________. (2)类比延伸: 如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程. (3)拓展迁移: 如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).