(本题12分)如图,已知直线与轴交于点,与轴交于点,抛物线与直线交于、两点,与轴交于、两点,且点坐标为(1,0).(1)求该抛物线的解析式;(2)动点在轴上移动,当△是直角三角形时,直接写出点的坐标;(3)在抛物线的对称轴上找一点,使||的值最大,求出点的坐标.
已知二次函数.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)若该二次函数图象与x轴的交点为A,B,求△ABC的面积.
已知关于的一元二次方程方程有两个不相等的实数根.(1)求的取值范围;(2)当取最大整数时,不解方程直接写出方程的两根之和与两根之积.
解方程:
小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片, 使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).
初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都折收费.(1)若有名学生,用代数式表示两种优惠方案各需多少元?(2)当时,采用哪种方案优惠?(3)当时,采用哪种方案优惠?