某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知:.
求作:的平分线.
作法:(1)以点为圆心,适当长为半径画弧,交于点,交于点.
(2)分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点.
(3)画射线,射线即为所求(如图).
请你根据提供的材料完成下面问题.
(1)这种作已知角的平分线的方法的依据是 .(填序号)
①②③④
(2)请你证明为的平分线.
先化简再求值:,其中.
计算:.
如图1所示,在平面直角坐标系中,抛物线 F 1 : y = a ( x - 2 5 ) 2 + 64 15 与 x 轴交于点 A ( - 6 5 , 0 ) 和点 B ,与 y 轴交于点 C .
(1)求抛物线 F 1 的表达式;
(2)如图2,将抛物线 F 1 先向左平移1个单位,再向下平移3个单位,得到抛物线 F 2 ,若抛物线 F 1 与抛物线 F 2 相交于点 D ,连接 BD , CD , BC .
①求点 D 的坐标;
②判断 ΔBCD 的形状,并说明理由;
(3)在(2)的条件下,抛物线 F 2 上是否存在点 P ,使得 ΔBDP 为等腰直角三角形,若存在,求出点 P 的坐标;若不存在,请说明理由.
如图1,在矩形 ABCD 中, AB = 6 , BC = 8 ,动点 P , Q 分别从 C 点, A 点同时以每秒1个单位长度的速度出发,且分别在边 CA , AB 上沿 C → A , A → B 的方向运动,当点 Q 运动到点 B 时, P , Q 两点同时停止运动.设点 P 运动的时间为 t ( s ) ,连接 PQ ,过点 P 作 PE ⊥ PQ , PE 与边 BC 相交于点 E ,连接 QE .
(1)如图2,当 t = 5 s 时,延长 EP 交边 AD 于点 F .求证: AF = CE ;
(2)在(1)的条件下,试探究线段 AQ , QE , CE 三者之间的等量关系,并加以证明;
(3)如图3,当 t > 9 4 s 时,延长 EP 交边 AD 于点 F ,连接 FQ ,若 FQ 平分 ∠ AFP ,求 AF CE 的值.