(满分8分)如图:O是正方形ABCD对角线的交点,圆心角为90°的扇形EOF从图1位置,顺时针旋转到图2位置,、分别交、于、.\(1)猜想AG与BH的数量关系;(2)证明你的猜想.
如图1,滨海广场装有可利用风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯。该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,,且根据我市的地理位置设定太阳能板AB的倾斜角为,AB=1.5米,CD=1米。为保证长为1米的风力发电机叶片无障碍旋转,叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得,,,结果保留两位小数)
(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长. (2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF∠BD于O. (1)求证:BO=DO (2)若EF⊥AB,延长EF∠AD的延长线于G,当FG=1时,求AD的长.
如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B. (1)求证:AC•CD=CP•BP; (2)若AB=10,BC=12,当PD∥AB时,求BP的长.
如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN. (1)求证:AM=BN; (2)当MA∥CN时,试求旋转角α的余弦值.