(本题16分)如图,正比例函数和反比例函数的图象都经过点 A ( 3 , 3) ,把直线 OA 向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点。(1)求 m的值;( 2 )求过 A、B、D 三点的抛物线的解析式;( 3 )若点E是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积S1,是四边形OACD 面积S的?若存在,求点 E 的坐标;若不存在,请说明理由.
如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B(4,2). (1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标; (2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°. 根据上面提供的信息,回答下列问题: (1)写出样本容量、m的值及抽取部分学生体育成绩的中位数; (2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
先化简,再求值:,其中x=-4.
计算:.
已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长. (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.