(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列的前项和为,且,(1)若,求数列的前项和;(2)若,,求证:数列为等比数列,并求出其通项公式;(3)记,若对任意的,恒成立,求实数的取值范围.
设f(x)=(1)将函数的图象向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求.并用“五点法”画出y="g(x)," x∈[0,π]的图像。(2)若关于x的方程g(x)= k+1在内有两个不同根α、β,求α+β的值及k的取值范围.
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
已知求值:(1) (2)
已知,是第三象限角,求.
如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在轴上的截距为,交椭圆于A、B两个不同点.(1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与轴始终围成一个等腰三角形.