已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1,l2和x轴所围成的三角形面积.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC, AE= AB,BD,CE相交于点F。(I)求证:A,E,F,D四点共圆;(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.
(本小题满分12分)设和是函数的两个极值点,其中,.(Ⅰ) 求的取值范围;(Ⅱ) 若,求的最大值.
(本小题满分12分)如图,在点上,过点做//将的位置(),使得.(I)求证: (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.
(本小题满分12分) 某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者。(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望。(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率
(本小题满分12分) 已知向量,设函数,(Ⅰ)求函数的表达式;(Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求边的长.