为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (Ⅰ)设 A 为事件"选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会"求事件 A 发生的概率; (Ⅱ)设 X 为选出的4人中种子选手的人数,求随机变量 X 的分布列和数学期望.
(本小题满分12分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为. (Ⅰ)求小刘第一次参加测试就合格的概率; (Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
(本小题满分12分)已知函数 (Ⅰ)求函数的对称中心; (Ⅱ)已知△ABC内角的对边分别为,且,,,求
(本小题满分14分)设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.
(本小题满分13分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.
(本小题满分12分)已知单调递增的等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求成立的正整数的最小值.