已知函数 f ( x ) = - 2 ( x + a ) ln x + x 2 - 2 a x - 2 a 2 + a ,其中 a > 0 . (1)设 g ( x ) 是 f ( x ) 的导函数,评论 g ( x ) 的单调性; (2)证明:存在 a ∈ ( 0 , 1 ) ,使得 f ( x ) ≥ 0 在区间 ( 1 , + ∞ ) 内恒成立,且 f ( x ) = 0 在 ( 1 , + ∞ ) 内有唯一解.
.(14分)已知椭圆+=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),Q是椭圆外的动点,满足=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足,(1)设x为点P的横坐标,证明=a+x;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2?若存在,求∠F1MF2的正切值;若不存在,请说明理由.
设二次函数(a>0),方程的两个根满足. (1),求 的值。(2)设函数的图象关于直线对称,证明:(3)当x∈(0,)时,证明x<<;
、已知命题p:方程a2x2+ax-2=0在[-1,1]上有解:命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求a的取值范围.
.已知数列满足,.(Ⅰ)求证:数列是等比数列;(Ⅱ)求数列的通项公式和前项和.
设函数(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为2,求的值,并求出的对称轴方程.