已知函数 f ( x ) = - 2 ( x + a ) ln x + x 2 - 2 a x - 2 a 2 + a ,其中 a > 0 . (1)设 g ( x ) 是 f ( x ) 的导函数,评论 g ( x ) 的单调性; (2)证明:存在 a ∈ ( 0 , 1 ) ,使得 f ( x ) ≥ 0 在区间 ( 1 , + ∞ ) 内恒成立,且 f ( x ) = 0 在 ( 1 , + ∞ ) 内有唯一解.
双曲线C与椭圆=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.
已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点. (1)求双曲线的标准方程; (2)求以双曲线的右准线为准线的抛物线的标准方程.
已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为. (1)求双曲线的标准方程; (2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.
已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.