正方形所在平面与三角形所在平面相交于,平面,且,.(1)求证:平面;(2)求凸多面体的体积.
设函数f(x)= ×,其中向量="(2cosx,1)," =(cosx, sin2x+m). (1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间; (2)当xÎ[0]时,ô f(x)ô <4恒成立,求实数m的取值范围.
已知向量=(sinA,cosA), =,,且A为锐角. (1)求角A的大小; (2)求函数f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值时x的集合.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.(1)根据茎叶图判断哪个班的平均身高较高;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.
已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.(1)求f(log2)的值;(2)求f(x)的解析式.
已知f(α)= (1)化简f(α)(2)若cos(+2α)=,求f(-α)的值.