如图1,在直角梯形 A B C D 中, A D / / B C , ∠ B A D = π 2 , A B = B C = 1 2 A D = a , , E 是 A D 的中点, O 是 O C 与 B E 的交点,将 △ A B E 沿 B E 折起到图2中 △ A 1 B E 的位置,得到四棱锥 A 1 - B C D E .
(Ⅰ)证明: C D ⊥ 平面 A 1 O C ; (Ⅱ)当平面 A 1 B E ⊥ 平面 B C D E 时,四棱锥 A 1 - B C D E 的体积为 36 2 ,求 a 的值.
选修4-5:不等式选讲)已知x,yR,且|x+y|≤,|x-y|≤,求证:|5x+y|≤1.
选修4-4:坐标系与参数方程)已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的极坐标方程为.(1)把直线的极坐标方程化为直角坐标系方程;(2)已知为椭圆上一点,求到直线的距离的最小值.
(选修4-2:矩阵与变换) 已知矩阵, (1)求逆矩阵;(2)若矩阵满足,试求矩阵.
(选修4-1:几何证明选讲)如图在中,AB=AC,过点A的直线与的外接圆交于点P,交BC的延长线于点D.求证
(本小题满分16分)已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2 010的n的最小值.