某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率; (2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.
椭圆C:(a>b>0)的离心率为,P(m,0)为C的长轴上的一个动点,过P点斜率为的直线l交C于A、B两点.当m=0时, (1)求C的方程; (2)证明:为定值.
如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点. (1)求证:A1B∥平面ADC1; (2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.
某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。 (1)求5名大学生中恰有2名被分配到体操项目的概率; (2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).
已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2. (1)求an与k; (2)若数列{bn}满足,(n≥2),求bn.
已知函数和 (1)若函数在区间不单调,求的取值范围; (2)当时,不等式恒成立,求的最大值.